

# Amit Rotem

[arotem33@gmail.com](mailto:arotem33@gmail.com)

[github.com/arotem3](https://github.com/arotem3)

[arotem3.github.io](https://arotem3.github.io)

**Programming:** C++20, Python, CUDA, MPI, OpenMP

**Interests:** high performance scientific computing, mathematical modeling, partial differential equations.

---

## Education

**Virginia Tech**, Blacksburg, VA

*Ph.D. Mathematics, Expected 2026*

GPA: 3.9

**Colorado School of Mines**, Golden, CO

*M.S. Computational & Applied Mathematics, 2021*

GPA: 4.0

**Colorado School of Mines**, Golden, CO

*B.S. Applied Mathematics & Statistics, 2020*

GPA: 3.6

---

## Technical Skills

|                    |                                                                                       |
|--------------------|---------------------------------------------------------------------------------------|
| <b>Languages</b>   | C++20 (and newer), Python, MATLAB                                                     |
| <b>Computation</b> | CUDA, MPI, OpenMP                                                                     |
| <b>Numerics</b>    | High-order finite elements, iterative methods, domain decomposition, low-rank methods |
| <b>Tools</b>       | Linux, Git, CMake, profiling/optimization, distributed computing systems              |

## Projects & Experience

**Lawrence Livermore National Laboratory — Computing Scholar**

Summer 2024

- Devised matrix-free methods (C++/CUDA) targeting high dimensional physics simulations.
- Implemented templated GPU kernels supporting configurable memory/thread layouts.
- Code: <https://github.com/GenDiL/GenDiL>

**High-Performance Discontinuous Galerkin (DG) in MFEM Library**

2023–Present

- Integrated interior penalty DG in 2D/3D with GPU-optimized matrix-free algorithms.
- Achieved substantial speedups relative to existing matrix-based MFEM implementations.
- Code: <https://github.com/mfem/mfem>

**Ph.D. Research — Virginia Tech**

2021–Present

- Developed theory and practical implementations of the WaveHoltz iterative Helmholtz solver.
- Extended multiscale variant for homogenization.
- Built scalable domain-decomposition and multigrid accelerated variants.
- Formulated fast low-rank reduced order models for the Navier Stokes equations.

**CASER (NSF IUCRC)**

2019–2021

- Built ML pipelines for hyperspectral geological imaging: segmentation, clustering, classification.
- Constructed predictive models in TensorFlow and scikit-learn.

---

## Selected Publications

- Rotem A., Runborg O., Appelö D. *Convergence of the Semi-Discrete WaveHoltz Iteration*.
- Carter S., Rotem A., Walker S. *A Domain Decomposition Approach for Nematic Liquid Crystal Models*. *J. Non-Newtonian Fluid Mechanics*, 2020.
- Rotem A. et al. *Interpretation of Hyperspectral SWIR Core Scanning Data Using ML*. *Geosciences*, 2023.

## Awards

- Best Poster at SIAM Central States, 2024.
- Professor Everett Award (mathematical contributions to geological sciences) at Colorado School of Mines, 2021.